Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Ecol Appl ; : e2965, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629596

RESUMO

Habitat loss is affecting many species, including the southern mountain caribou (Rangifer tarandus caribou) population in western North America. Over the last half century, this threatened caribou population's range and abundance have dramatically contracted. An integrated population model was used to analyze 51 years (1973-2023) of demographic data from 40 southern mountain caribou subpopulations to assess the effectiveness of population-based recovery actions at increasing population growth. Reducing potential limiting factors on threatened caribou populations offered a rare opportunity to identify the causes of decline and assess methods of recovery. Southern mountain caribou abundance declined by 51% between 1991 and 2023, and 37% of subpopulations were functionally extirpated. Wolf reduction was the only recovery action that consistently increased population growth when applied in isolation, and combinations of wolf reductions with maternal penning or supplemental feeding provided rapid growth but were applied to only four subpopulations. As of 2023, recovery actions have increased the abundance of southern mountain caribou by 52%, compared to a simulation with no interventions. When predation pressure was reduced, rapid population growth was observed, even under contemporary climate change and high levels of habitat loss. Unless predation is reduced, caribou subpopulations will continue to be extirpated well before habitat conservation and restoration can become effective.

3.
Ecol Evol ; 12(8): e9201, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35979523

RESUMO

The recovery of carnivore populations in North American has consequences for trophic interactions and population dynamics of prey. In addition to direct effects on prey populations through killing, predators can influence prey behavior by imposing the risk of predation. The mechanisms through which patterns of space use by predators are linked to behavioral response by prey and nonconsumptive effects on prey population dynamics are poorly understood. Our goal was to characterize population- and individual-level patterns of resource selection by elk (Cervus canadensis) in response to risk of wolves (Canis lupus) and mountain lions (Puma concolor) and evaluate potential nonconsumptive effects of these behavioral patterns. We tested the hypothesis that individual elk risk-avoidance behavior during summer would result in exposure to lower-quality forage and reduced body fat and pregnancy rates. First, we evaluated individuals' second-order and third-order resource selection with a used-available sampling design. At the population level, we found evidence for a positive relationship between second- and third-order selection and forage, and an interaction between forage quality and mountain lion risk such that the relative probability of use at low mountain lion risk increased with forage quality but decreased at high risk at both orders of selection. We found no evidence of a population-level trade-off between forage quality and wolf risk. However, we found substantial among-individual heterogeneity in resource selection patterns such that population-level patterns were potentially misleading. We found no evidence that the diversity of individual resource selection patterns varied predictably with available resources, or that patterns of individual risk-related resource selection translated into biologically meaningful changes in body fat or pregnancy rates. Our work highlights the importance of evaluating individual responses to predation risk and predator hunting technique when assessing responses to predators and suggests nonconsumptive effects are not operating at a population scale in this system.

4.
Mov Ecol ; 10(1): 17, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395833

RESUMO

BACKGROUND: Global increases in human activity threaten connectivity of animal habitat and populations. Protection and restoration of wildlife habitat and movement corridors require robust models to forecast the effects of human activity on movement behaviour, resource selection, and connectivity. Recent research suggests that animal resource selection and responses to human activity depend on their behavioural movement state, with increased tolerance for human activity in fast states of movement. Yet, few studies have incorporated state-dependent movement behaviour into analyses of Merriam connectivity, that is individual-based metrics of connectivity that incorporate landscape structure and movement behaviour. METHODS: We assessed the cumulative effects of anthropogenic development on multiple movement processes including movement behaviour, resource selection, and Merriam connectivity. We simulated movement paths using hidden Markov movement models and step selection functions to estimate habitat use and connectivity for three landscape scenarios: reference conditions with no anthropogenic development, current conditions, and future conditions with a simulated expansion of towns and recreational trails. Our analysis used 20 years of grizzly bear (Ursus arctos) and gray wolf (Canis lupus) movement data collected in and around Banff National Park, Canada. RESULTS: Carnivores increased their speed of travel near towns and areas of high trail and road density, presumably to avoid encounters with people. They exhibited stronger avoidance of anthropogenic development when foraging and resting compared to travelling and during the day compared to night. Wolves exhibited stronger avoidance of anthropogenic development than grizzly bears. Current development reduced the amount of high-quality habitat between two mountain towns by more than 35%. Habitat degradation constrained movement routes around towns and was most pronounced for foraging and resting behaviour. Current anthropogenic development reduced connectivity from reference conditions an average of 85%. Habitat quality and connectivity further declined under a future development scenario. CONCLUSIONS: Our results highlight the cumulative effects of anthropogenic development on carnivore movement behaviour, habitat use, and connectivity. Our strong behaviour-specific responses to human activity suggest that conservation initiatives should consider how proposed developments and restoration actions would affect where animals travel and how they use the landscape.

5.
Ecol Appl ; 32(5): e2580, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35319129

RESUMO

Recovering endangered species is a difficult and often controversial task that challenges status quo land uses. Southern Mountain caribou are a threatened ecotype of caribou that historically ranged in southwestern Canada and northwestern USA and epitomize the tension between resource extraction, biodiversity conservation, and Indigenous Peoples' treaty rights. Human-induced habitat alteration is considered the ultimate cause of caribou population declines, whereby an increased abundance of primary prey-such as moose and deer-elevates predator populations and creates unsustainable caribou mortality. Here we focus on the Klinse-Za and Quintette subpopulations, part of the endangered Central Group of Southern Mountain caribou in British Columbia. These subpopulations were trending toward immediate extirpation until a collaborative group initiated recovery by implementing two short-term recovery actions. We test the effectiveness of these recovery actions-maternity penning of adult females and their calves, and the reduction of a primary predator, wolves-in increasing vital rates and population growth. Klinse-Za received both recovery actions, whereas Quintette only received wolf reductions, providing an opportunity to test efficacy between recovery actions. Between 1995 and 2021, we followed 162 collared female caribou for 414 animal-years to estimate survival and used aerial counts to estimate population abundance and calf recruitment. We combined these data in an integrated population model to estimate female population growth, total population abundance, and recovery action effectiveness. Results suggest that the subpopulations were declining rapidly (λ = 0.90-0.93) before interventions and would have been functionally extirpated (<10 animals) within 10-15 years. Wolf reduction increased population growth rates by ~0.12 for each subpopulation. Wolf reduction halted the decline of Quintette caribou and allowed them to increase (λ = 1.05), but alone would have only stabilized the Klinse-Za (λ = 1.02). However, maternity penning in the Klinse-Za increased population growth by a further ~0.06, which when combined with wolf reductions, allowed populations to grow (λ = 1.08). Taken together, the recovery actions in these subpopulations increased adult female survival, calf recruitment, and overall population growth, more than doubling abundance. Our results suggest that maternity penning and wolf reductions can be effective at increasing caribou numbers in the short term, while long-term commitments to habitat protection and restoration are made.


Assuntos
Cervos , Rena , Lobos , Animais , Colúmbia Britânica , Cervos/fisiologia , Demografia , Ecossistema , Feminino , Comportamento Predatório/fisiologia , Gravidez , Rena/fisiologia , Lobos/fisiologia
6.
Ecol Appl ; 32(5): e2581, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35319140

RESUMO

Indigenous Peoples around the northern hemisphere have long relied on caribou for subsistence and for ceremonial and community purposes. Unfortunately, despite recovery efforts by federal and provincial agencies, caribou are currently in decline in many areas across Canada. In response to recent and dramatic declines of mountain caribou populations within their traditional territory, West Moberly First Nations and Saulteau First Nations (collectively, the "Nations") came together to create a new vision for caribou recovery on the lands they have long stewarded and shared. The Nations focused on the Klinse-Za subpopulation, which had once encompassed so many caribou that West Moberly Elders remarked that they were "like bugs on the landscape." The Klinse-Za caribou declined from ~250 in the 1990s to only 38 in 2013, rendering Indigenous harvest of caribou nonviable and infringing on treaty rights to a subsistence livelihood. In collaboration with many groups and governments, this Indigenous-led conservation initiative paired short-term population recovery actions, predator reduction and maternal penning, with long-term habitat protection in an effort to create a self-sustaining caribou population. Here, we review these recovery actions and the promising evidence that the abundance of Klinse-Za caribou has more than doubled from 38 animals in 2013 to 101 in 2021, representing rapid population growth in response to recovery actions. With looming extirpation averted, the Nations focused efforts on securing a landmark conservation agreement in 2020 that protects caribou habitat over a 7986-km2 area. The Agreement provides habitat protection for >85% of the Klinse-Za subpopulation (up from only 1.8% protected pre-conservation agreement) and affords moderate protection for neighboring caribou subpopulations (29%-47% of subpopulation areas, up from 0%-20%). This Indigenous-led conservation initiative has set both the Indigenous and Canadian governments on the path to recover the Klinse-Za subpopulation and reinstate a culturally meaningful caribou hunt. This effort highlights how Indigenous governance and leadership can be the catalyst needed to establish meaningful conservation actions, enhance endangered species recovery, and honor cultural connections to now imperiled wildlife.


Assuntos
Rena , Animais , Canadá , Conservação dos Recursos Naturais , Ecossistema , Espécies em Perigo de Extinção , Rena/fisiologia
7.
Conserv Biol ; 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35146809

RESUMO

Genetic mechanisms determining habitat selection and specialization of individuals within species have been hypothesized, but not tested at the appropriate individual level in nature. In this work, we analyzed habitat selection for 139 GPS-collared caribou belonging to three declining ecotypes sampled throughout Northwestern Canada. We used Resource Selection Functions (RSFs) comparing resources at used and available locations. We found that the three caribou ecotypes differed in their use of habitat suggesting specialization. On expected grounds, we also found differences in habitat selection between summer and winter, but also, originally, among the individuals within an ecotype. We next obtained Single Nucleotide Polymorphisms (SNPs) for the same caribou individuals, we detected those associated to habitat selection, and then identified genes linked to these SNPs. These genes had functions related in other organisms to habitat and dietary specializations, and climatic adaptations. We therefore suggest that individual variation in habitat selection was based on genotypic variation in the SNPs of individual caribou, indicating that genetic forces underlie habitat and diet selection in the species. We also suggest that the associations between habitat and genes that we detected may lead to lack of resilience in the species, thus contributing to caribou endangerment. Our work emphasizes that similar mechanisms may exist for other specialized, endangered species. This article is protected by copyright. All rights reserved.

8.
Ecol Evol ; 12(2): e8589, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35222962

RESUMO

There is growing evidence that prey perceive the risk of predation and alter their behavior in response, resulting in changes in spatial distribution and potential fitness consequences. Previous approaches to mapping predation risk across a landscape quantify predator space use to estimate potential predator-prey encounters, yet this approach does not account for successful predator attack resulting in prey mortality. An exception is a prey kill site that reflects an encounter resulting in mortality, but obtaining information on kill sites is expensive and requires time to accumulate adequate sample sizes.We illustrate an alternative approach using predator scat locations and their contents to quantify spatial predation risk for elk (Cervus canadensis) from multiple predators in the Rocky Mountains of Alberta, Canada. We surveyed over 1300 km to detect scats of bears (Ursus arctos/U. americanus), cougars (Puma concolor), coyotes (Canis latrans), and wolves (C. lupus). To derive spatial predation risk, we combined predictions of scat-based resource selection functions (RSFs) weighted by predator abundance with predictions that a predator-specific scat in a location contained elk. We evaluated the scat-based predictions of predation risk by correlating them to predictions based on elk kill sites. We also compared scat-based predation risk on summer ranges of elk following three migratory tactics for consistency with telemetry-based metrics of predation risk and cause-specific mortality of elk.We found a strong correlation between the scat-based approach presented here and predation risk predicted by kill sites and (r = .98, p < .001). Elk migrating east of the Ya Ha Tinda winter range were exposed to the highest predation risk from cougars, resident elk summering on the Ya Ha Tinda winter range were exposed to the highest predation risk from wolves and coyotes, and elk migrating west to summer in Banff National Park were exposed to highest risk of encountering bears, but it was less likely to find elk in bear scats than in other areas. These patterns were consistent with previous estimates of spatial risk based on telemetry of collared predators and recent cause-specific mortality patterns in elk.A scat-based approach can provide a cost-efficient alternative to kill sites of quantifying broad-scale, spatial patterns in risk of predation for prey particularly in multiple predator species systems.

9.
PLoS Genet ; 18(2): e1009974, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143486

RESUMO

Wide-ranging animals, including migratory species, are significantly threatened by the effects of habitat fragmentation and habitat loss. In the case of terrestrial mammals, this results in nearly a quarter of species being at risk of extinction. Caribou are one such example of a wide-ranging, migratory, terrestrial, and endangered mammal. In populations of caribou, the proportion of individuals considered as "migrants" can vary dramatically. There is therefore a possibility that, under the condition that migratory behavior is genetically determined, those individuals or populations that are migratory will be further impacted by humans, and this impact could result in the permanent loss of the migratory trait in some populations. However, genetic determination of migration has not previously been studied in an endangered terrestrial mammal. We examined migratory behavior of 139 GPS-collared endangered caribou in western North America and carried out genomic scans for the same individuals. Here we determine a genetic subdivision of caribou into a Northern and a Southern genetic cluster. We also detect >50 SNPs associated with migratory behavior, which are in genes with hypothesized roles in determining migration in other organisms. Furthermore, we determine that propensity to migrate depends upon the proportion of ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies. If, as we report, migratory behavior is influenced by genes, caribou could be further impacted by the loss of the migratory trait in some isolated populations already at low numbers. Our results indicating an ancestral genetic component also suggest that the migratory trait and their associated genetic mutations could not be easily re-established when lost in a population.


Assuntos
Migração Animal/fisiologia , Genoma/genética , Rena/genética , Animais , Comportamento Animal/fisiologia , Evolução Biológica , Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Ecossistema , Espécies em Perigo de Extinção/estatística & dados numéricos , Feminino , Genômica/métodos , Haplótipos , América do Norte , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
10.
Ecol Appl ; 32(3): e2549, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35094462

RESUMO

Climate change will lead to more frequent and more severe fires in some areas of boreal forests, affecting the distribution and availability of late-successional forest communities. These forest communities help to protect globally significant carbon reserves beneath permafrost layers and provide habitat for many animal species, including forest-dwelling caribou. Many caribou populations are declining, yet the mechanisms by which changing fire regimes could affect caribou declines are poorly understood. We analyzed resource selection of 686 GPS-collared female caribou from three ecotypes and 15 populations in a ~600,000 km2 region of northwest Canada and eastern Alaska. These populations span a wide gradient of fire frequency but experience low levels of human-caused habitat disturbance. We used a mixed-effects modeling framework to characterize caribou resource selection in response to burns at different seasons and spatiotemporal scales, and to test for functional responses in resource selection to burn availability. We also tested mechanisms driving observed selection patterns using burn severity and lichen cover data. Caribou avoided burns more strongly during winter relative to summer and at larger spatiotemporal scales relative to smaller scales. During the winter, caribou consistently avoided burns at both spatiotemporal scales as burn availability increased, indicating little evidence of a functional response. However, they decreased their avoidance of burns during summer as burn availability increased. Burn availability explained more variation in caribou selection for burns than ecotype. Within burns, caribou strongly avoided severely burned areas in winter, and this avoidance lasted nearly 30 years after a fire. Caribou within burns also selected higher cover of terrestrial lichen (an important caribou food source). We found a negative relationship between burn severity and lichen cover, confirming that caribou avoidance of burns was consistent with lower lichen abundance. Consistent winter avoidance of burns and severely burned areas suggests that caribou will experience increasing winter habitat loss as fire frequency and severity increase. Our results highlight the potential for climate-induced alteration of natural disturbance regimes to affect boreal biodiversity through habitat loss. We suggest that management strategies prioritizing protection of core winter range habitat with lower burn probabilities would provide important climate-change refugia for caribou.


Assuntos
Incêndios , Rena , Animais , Ecossistema , Feminino , Florestas , Rena/fisiologia , Taiga
11.
Ecology ; 103(5): e3652, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35084736

RESUMO

Migration is a tactic used across taxa to access resources in temporally heterogenous landscapes. Populations that migrate can attain higher abundances because such movements allow access to higher quality resources, or reduction in predation risk resulting in increased fitness. However, most migratory species occur in partially migratory populations, a mix of migratory and non-migratory individuals. It is thought that the portion of migrants in a partial migration population is maintained either through (1) a population-level evolutionary stable state where counteracting density-dependent vital rates act on migrants and residents to balance fitness or (2) conditional migration, where the propensity to migrate is influenced by the individual's state. However, in many respects, migration is also a form of habitat selection and the proportion of migrants and residents may be the result of density-dependent habitat selection. Here, we test whether the theory of Ideal Free Distribution (IFD) can explain the coexistence of different migratory tactics in a partially migratory population. IFD predicts individuals exhibit density-dependent vital rates and select different migratory tactics to maximize individual fitness resulting in equal fitness (λ) between tactics. We tested the predictions of IFD in a partially migratory elk population that declined by 70% with 19 years of demographic data and migratory tactic switching rates from >300 individuals. We found evidence of density dependence for resident pregnancy and adult female survival providing a fitness incentive to switch tactics. Despite differences in vital rates between migratory tactics, mean λ (fitness) was equal. However, as predicted by the IFD, individuals switched tactics toward those of higher fitness. Our analysis reveals that partial migration may be driven by tactic selection that follows the ideal free distribution. These findings reinforce that migration across taxa may be a polymorphic behavior in large herbivores where migratory tactic selection is determined by differential costs and benefits, mediated by density dependence.


Assuntos
Migração Animal , Herbivoria , Animais , Ecossistema , Feminino , Densidade Demográfica , Comportamento Predatório
13.
Glob Ecol Conserv ; 32: e01895, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34729384

RESUMO

Recent events related to the measures taken to control the spread of the Coronavirus (SARS-CoV-2) reduced human mobility (i.e. anthropause), potentially opening connectivity opportunities for wildlife populations. In the Italian Alps, brown bears have recovered after reintroduction within a complex anthropogenic matrix, but failed to establish a metapopulation due to reduced connectivity and human disturbance (i.e. infrastructure, land use, and human mobility). Previous work from Peters et al. (2015, Biol. Cons. 186, 123-133) predicted the main corridors and suitable hot spots for road network crossing for this population across all major roads and settlement zones, to link most suitable habitats. Bears used the identified hot spots for road network crossing over the years, but major barriers such as main motor roads were not overcome, possibly due to functional anthropogenic disturbance, specifically human mobility. By analyzing 404 bear occurrences reported to local authorities (as bear-related complaints) collected between 2016 and 2020 (March 9th - May 18th), hence including the COVID-19 related lockdown, we tested the effect of human presence on brown bears' use of space and hot spots for road network crossing. Animals occupied human-dominated spaces and approached hot spots for crossing at a higher rate during the lockdown than in previous years, suggesting that connectivity temporarily increased with reduced human mobility for this population. As a result of their increased use of hot spots, bears expanded their use of suitable areas beyond the population core area. Movement of animals across structural barriers such as roads and human settlements may therefore occur in absence of active disturbance. We also showed the value of predictive models to identify hot spots for animal barrier crossing, the knowledge of which is critical when implementing management solutions to enhance connectivity. Understanding the factors that influence immigration and emigration across metapopulations of large mammals, particularly carnivores that may compete indirectly with humans for space or directly as super-predators, is critical to ensure the long-term viability of conservation efforts for their persistence. We argue that dynamic factors such as human mobility may play a larger role than previously recognized.

14.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282006

RESUMO

While the important role of animal-mediated interactions in the top-down restructuring of plant communities is well documented, less is known of their ensuing repercussions at higher trophic levels. We demonstrate how typically decoupled ecological interactions may become intertwined such that the impact of an insect pest on forest structure and composition alters predator-prey interactions among large mammals. Specifically, we show how irruptions in a common, cyclic insect pest of the boreal forest, the spruce budworm (Choristoneura fumiferana), modulated an indirect trophic interaction by initiating a flush in deciduous vegetation that benefited moose (Alces alces), in turn strengthening apparent competition between moose and threatened boreal caribou (Rangifer tarandus caribou) via wolf (Canis lupus) predation. Critically, predation on caribou postoutbreak was exacerbated by human activity (salvage logging). We believe our observations of significant, large-scale reverberating consumer-producer-consumer interactions are likely to be common in nature.


Assuntos
Temperatura Baixa , Ecossistema , Cadeia Alimentar , Atividades Humanas/estatística & dados numéricos , Insetos/fisiologia , Modelos Biológicos , Comportamento Predatório , Animais , Humanos
16.
Glob Chang Biol ; 27(16): 3718-3731, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33887083

RESUMO

Human activity and land use change impact every landscape on Earth, driving declines in many animal species while benefiting others. Species ecological and life history traits may predict success in human-dominated landscapes such that only species with "winning" combinations of traits will persist in disturbed environments. However, this link between species traits and successful coexistence with humans remains obscured by the complexity of anthropogenic disturbances and variability among study systems. We compiled detection data for 24 mammal species from 61 populations across North America to quantify the effects of (1) the direct presence of people and (2) the human footprint (landscape modification) on mammal occurrence and activity levels. Thirty-three percent of mammal species exhibited a net negative response (i.e., reduced occurrence or activity) to increasing human presence and/or footprint across populations, whereas 58% of species were positively associated with increasing disturbance. However, apparent benefits of human presence and footprint tended to decrease or disappear at higher disturbance levels, indicative of thresholds in mammal species' capacity to tolerate disturbance or exploit human-dominated landscapes. Species ecological and life history traits were strong predictors of their responses to human footprint, with increasing footprint favoring smaller, less carnivorous, faster-reproducing species. The positive and negative effects of human presence were distributed more randomly with respect to species trait values, with apparent winners and losers across a range of body sizes and dietary guilds. Differential responses by some species to human presence and human footprint highlight the importance of considering these two forms of human disturbance separately when estimating anthropogenic impacts on wildlife. Our approach provides insights into the complex mechanisms through which human activities shape mammal communities globally, revealing the drivers of the loss of larger predators in human-modified landscapes.


Assuntos
Animais Selvagens , Características de História de Vida , Animais , Ecossistema , Atividades Humanas , Humanos , Mamíferos , América do Norte
17.
Sci Rep ; 11(1): 3722, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580121

RESUMO

The presence of many pathogens varies in a predictable manner with latitude, with infections decreasing from the equator towards the poles. We investigated the geographic trends of pathogens infecting a widely distributed carnivore: the gray wolf (Canis lupus). Specifically, we investigated which variables best explain and predict geographic trends in seroprevalence across North American wolf populations and the implications of the underlying mechanisms. We compiled a large serological dataset of nearly 2000 wolves from 17 study areas, spanning 80° longitude and 50° latitude. Generalized linear mixed models were constructed to predict the probability of seropositivity of four important pathogens: canine adenovirus, herpesvirus, parvovirus, and distemper virus-and two parasites: Neospora caninum and Toxoplasma gondii. Canine adenovirus and herpesvirus were the most widely distributed pathogens, whereas N. caninum was relatively uncommon. Canine parvovirus and distemper had high annual variation, with western populations experiencing more frequent outbreaks than eastern populations. Seroprevalence of all infections increased as wolves aged, and denser wolf populations had a greater risk of exposure. Probability of exposure was positively correlated with human density, suggesting that dogs and synanthropic animals may be important pathogen reservoirs. Pathogen exposure did not appear to follow a latitudinal gradient, with the exception of N. caninum. Instead, clustered study areas were more similar: wolves from the Great Lakes region had lower odds of exposure to the viruses, but higher odds of exposure to N. caninum and T. gondii; the opposite was true for wolves from the central Rocky Mountains. Overall, mechanistic predictors were more informative of seroprevalence trends than latitude and longitude. Individual host characteristics as well as inherent features of ecosystems determined pathogen exposure risk on a large scale. This work emphasizes the importance of biogeographic wildlife surveillance, and we expound upon avenues of future research of cross-species transmission, spillover, and spatial variation in pathogen infection.


Assuntos
Exposição Ambiental , Modelos Epidemiológicos , Infecções/veterinária , Lobos/virologia , Animais , Efeitos Antropogênicos , Feminino , Humanos , Infecções/epidemiologia , Infecções/etiologia , Infecções/transmissão , Masculino , América do Norte/epidemiologia , Estudos Soroepidemiológicos , Lobos/parasitologia
18.
Ecol Evol ; 11(24): 17835-17872, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003643

RESUMO

Summer diets are crucial for large herbivores in the subarctic and are affected by weather, harassment from insects and a variety of environmental changes linked to climate. Yet, understanding foraging behavior and diet of large herbivores is challenging in the subarctic because of their remote ranges. We used GPS video-camera collars to observe behaviors and summer diets of the migratory Fortymile Caribou Herd (Rangifer tarandus granti) across Alaska, USA and the Yukon, Canada. First, we characterized caribou behavior. Second, we tested if videos could be used to quantify changes in the probability of eating events. Third, we estimated summer diets at the finest taxonomic resolution possible through videos. Finally, we compared summer diet estimates from video collars to microhistological analysis of fecal pellets. We classified 18,134 videos from 30 female caribou over two summers (2018 and 2019). Caribou behaviors included eating (mean = 43.5%), ruminating (25.6%), travelling (14.0%), stationary awake (11.3%) and napping (5.1%). Eating was restricted by insect harassment. We classified forage(s) consumed in 5,549 videos where diet composition (monthly) highlighted a strong tradeoff between lichens and shrubs; shrubs dominated diets in June and July when lichen use declined. We identified 63 species, 70 genus and 33 family groups of summer forages from videos. After adjusting for digestibility, monthly estimates of diet composition were strongly correlated at the scale of the forage functional type (i.e., forage groups composed of forbs, graminoids, mosses, shrubs and lichens; r = 0.79, p < .01). Using video collars, we identified (1) a pronounced tradeoff in summer foraging between lichens and shrubs and (2) the costs of insect harassment on eating. Understanding caribou foraging ecology is needed to plan for their long-term conservation across the circumpolar north, and video collars can provide a powerful approach across remote regions.

19.
PLoS One ; 15(12): e0241042, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33275623

RESUMO

We studied the habitat selection of pronghorn (Antilocapra americana) during seasonal migration; an important period in an animal's annual cycle associated with broad-scale movements. We further decompose our understanding of migration habitat itself as the product of both broad- and fine-scale behavioral decisions and take a multi-scale approach to assess pronghorn spring and fall migration across the transboundary Northern Sagebrush Steppe region. We used a hierarchical habitat selection framework to assess a suite of natural and anthropogenic features that have been shown to influence selection patterns of pronghorn at both broad (migratory neighborhood) and fine (migratory pathway) scales. We then combined single-scale predictions into a scale-integrated step selection function (ISSF) map to assess its effectiveness in predicting migration route habitat. During spring, pronghorn selected for native grasslands, areas of high forage productivity (NDVI), and avoided human activity (i.e., roads and oil and natural gas wells). During fall, pronghorn selected for native grasslands, larger streams and rivers, and avoided roads. We detected avoidance of paved roads, unpaved roads, and wells at broad spatial scales, but no response to these features at fine scales. In other words, migratory pronghorn responded more strongly to anthropogenic features when selecting a broad neighborhood through which to migrate than when selecting individual steps along their migratory pathway. Our results demonstrate that scales of migratory route selection are hierarchically nested within each other from broader (second-order) to finer scales (third-order). In addition, we found other variables during particular migratory periods (i.e., native grasslands in spring) were selected for across scales indicating their importance for pronghorn. The mapping of ungulate migration habitat is a topic of high conservation relevance. In some applications, corridors are mapped according to telemetry location data from a sample of animals, with the assumption that the sample adequately represents habitat for the entire population. Our use of multi-scale modelling to predict resource selection during migration shows promise and may offer another relevant alternative for use in future conservation planning and land management decisions where telemetry-based sampling is unavailable or incomplete.


Assuntos
Migração Animal , Ruminantes , Alberta , Animais , Conservação dos Recursos Naturais , Ecossistema , Feminino , Sistemas de Informação Geográfica , Atividades Humanas , Humanos , Modelos Lineares , Montana , Ruminantes/fisiologia , Saskatchewan , Estações do Ano
20.
Mov Ecol ; 8: 39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072330

RESUMO

BACKGROUND: Temperatures in arctic-boreal regions are increasing rapidly and pose significant challenges to moose (Alces alces), a heat-sensitive large-bodied mammal. Moose act as ecosystem engineers, by regulating forest carbon and structure, below ground nitrogen cycling processes, and predator-prey dynamics. Previous studies showed that during hotter periods, moose displayed stronger selection for wetland habitats, taller and denser forest canopies, and minimized exposure to solar radiation. However, previous studies regarding moose behavioral thermoregulation occurred in Europe or southern moose range in North America. Understanding whether ambient temperature elicits a behavioral response in high-northern latitude moose populations in North America may be increasingly important as these arctic-boreal systems have been warming at a rate two to three times the global mean. METHODS: We assessed how Alaska moose habitat selection changed as a function of ambient temperature using a step-selection function approach to identify habitat features important for behavioral thermoregulation in summer (June-August). We used Global Positioning System telemetry locations from four populations of Alaska moose (n = 169) from 2008 to 2016. We assessed model fit using the quasi-likelihood under independence criterion and conduction a leave-one-out cross validation. RESULTS: Both male and female moose in all populations increasingly, and nonlinearly, selected for denser canopy cover as ambient temperature increased during summer, where initial increases in the conditional probability of selection were initially sharper then leveled out as canopy density increased above ~ 50%. However, the magnitude of selection response varied by population and sex. In two of the three populations containing both sexes, females demonstrated a stronger selection response for denser canopy at higher temperatures than males. We also observed a stronger selection response in the most southerly and northerly populations compared to populations in the west and central Alaska. CONCLUSIONS: The impacts of climate change in arctic-boreal regions increase landscape heterogeneity through processes such as increased wildfire intensity and annual area burned, which may significantly alter the thermal environment available to an animal. Understanding habitat selection related to behavioral thermoregulation is a first step toward identifying areas capable of providing thermal relief for moose and other species impacted by climate change in arctic-boreal regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA